Learning Multiplicity Tree Automata
نویسندگان
چکیده
In this paper, we present a theoretical approach for the problem of learning multiplicity tree automata. These automata allows one to define functions which compute a number for each tree. They can be seen as a strict generalization of stochastic tree automata since they allow to define functions over any field K. A multiplicity automaton admits a support which is a non deterministic automaton. From a grammatical inference point of view, this paper presents a contribution which is original due to the combination of two important aspects. This is the first time, as far as we now, that a learning method focuses on non deterministic tree automata which computes functions over a field. The algorithm proposed in this paper stands in Angluin’s exact model where a learner is allowed to use membership and equivalence queries. We show that this algorithm is polynomial in time in function of the size of the representation.
منابع مشابه
Complexity of Equivalence and Learning for Multiplicity Tree Automata
We consider the complexity of equivalence and learning for multiplicity tree automata, i.e., weighted tree automata over a field. We first show that the equivalence problem is logspace equivalent to polynomial identity testing, the complexity of which is a longstanding open problem. Secondly, we derive lower bounds on the number of queries needed to learn multiplicity tree automata in Angluin’s...
متن کاملOn Probability Distributions for Trees: Representations, Inference and Learning
We study probability distributions over free algebras of trees. Probability distributions can be seen as particular (formal power) tree series [BR82; EK03], i.e. mappings from trees to a semiring K. A widely studied class of tree series is the class of rational (or recognizable) tree series which can be defined either in an algebraic way or by means of multiplicity tree automata. We argue that ...
متن کاملVisibly Pushdown Automata with Multiplicities: Finiteness and K-Boundedness
We propose an extension of visibly pushdown automata by means of weights (represented as positive integers) associated with transitions, called visibly pushdown automata with multiplicities. The multiplicity of a computation is the product of the multiplicities of the transitions used along this computation. The multiplicity of an input is the sum of the ones of all its successful computations....
متن کاملLinks between multiplicity automata, observable operator models and predictive state representations: a unified learning framework
Stochastic multiplicity automata (SMA) are weighted finite automata that generalize probabilistic automata. They have been used in the context of probabilistic grammatical inference. Observable operator models (OOMs) are a generalization of hidden Markov models, which in turn are models for discrete-valued stochastic processes and are used ubiquitously in the context of speech recognition and b...
متن کاملMultidimensional fuzzy finite tree automata
This paper introduces the notion of multidimensional fuzzy finite tree automata (MFFTA) and investigates its closure properties from the area of automata and language theory. MFFTA are a superclass of fuzzy tree automata whose behavior is generalized to adapt to multidimensional fuzzy sets. An MFFTA recognizes a multidimensional fuzzy tree language which is a regular tree language so that for e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006